

1

A Recurrent Velocity Filter
for Detecting Large Numbers of Moving Objects

Reid Porter, Ed Rosten, Rohan Loveland

Abstract

We present a method for estimating the velocities of a large number of moving targets, such as cars and people, in

geographically referenced video. The problem is difficult, due to the large and variable number of objects which enter and
leave the field of view, and due to imperfect geo-projection and registration. In our method, we assume feature extraction
produces a collection of candidate locations (points in 2D space) for each frame. Some of these points are moving objects,
but many are not. Typical feature extraction might be frame differencing, or a target recognition system, e.g., a generic car
detector. For each candidate, and at each time step, our algorithm outputs a velocity histogram, from which trajectory
information can then be derived. In this paper we investigate the free parameters of the algorithm, assess its computational
requirements, and evaluate its performance on both synthetic and real-world geographically referenced video data.

1. Introduction
Geographically referenced (geo-spatial) video acquisition systems are now in practical use. Wide area imaging sensors

are placed on helicopters, balloons, small aircraft or unmanned aerial vehicle and geographically referenced video is
communicated to a ground station in real-time. Compared to satellite imagery, which provides data at time scales of
months or years, geo-spatial video provides data to observe and model temporal phenomena at time scales of seconds or
minutes.

Geo-spatial video exploitation presents new challenges for computer vision researchers. First, many objects of interest
(e.g. vehicles and people) cover very few pixels and therefore specific recognition is very difficult. The combination of
high clutter and poor specificity means finding reliable correspondences between frames is challenging. Second, moving
object detection in this imagery is an unsolved problem. Data arrives at about 1 or 2 frames per second, which means point-
like moving objects move anywhere from 1 to 200 pixels. In addition, registration is often required in real-time and is
therefore approximate, e.g., stationary objects might move up to 30 pixels over a short period of time. Finally, the oblique
viewing angles and incomplete digital elevation maps mean buildings and other landmarks suffer from parallax. This
introduces a large amount of motion clutter.

In many geo-spatial video applications, e.g., town planning, we are interested in accumulating route information from a
large, unknown, number of objects over a long period of time. Robust moving object detection can play two roles in this
problem.

The first is as a preprocessor to a tracking system. Many multi-target tracking systems have been proposed [7] which
could be applicable to geo-spatial video. Some of these methods assume the number of objects is known and then use a
variety of techniques to associate observations with targets [3]. Other methods include the number of objects as part of the
estimation problem [4], [8]. How these approaches perform at low frame rates, and scale to thousands of objects in high
clutter, is an open question. Moving object detection can help solve this problem by filtering through 10’s of thousands of
detections and giving high weight to locations most likely to be moving objects.

The second role of moving object detection is to provide more general statistics. By accumulating local velocity
estimates over a particular location, over long periods of time, we can produce many useful data products. For example,
consistent velocity measurements along a line could indicate the presence of a road. This is much simpler problem than
tracking all moving objects, and typically, track identity is less important than finding good correspondences

In Section 2 we describe the proposed approach and include a brief discussion of how our filter compares to other
methods. In section 3 we use synthetic data to investigate the filter’s parameter choices. We then turn our attention to a
real-world geo-spatial video dataset in Section 4. This section also describes a prototype feature extraction system which is
required to generate candidate locations from data.

2

2. A Recurrent Velocity Filter
At each time t (typically associated with a frame), we are given a set of locations:

{ } (), 1..t i t i N t
X x

=
= (1)

where 2
,i tx ∈ , and ()N t is the number of points, some of which are moving objects, but many are not. We assume

one, or more, objects pass through point ,i tx , and we would like to estimate a velocity distribution at this point, given the
data we have seen so far. We assume that objects follow a discrete trajectory through points in each frame, as shown in
Figure 1. We also assume that the velocity distribution can be estimated from a finite temporal window. This leads us to
our basic algorithm:

() () () ()
()

(), ,0 , , 1 , , ,
1

| ,
s

T

i t i i t j t i t j t s j t s
s j W i

p v p v K p x x p v x x p vη − − −
= ∈

= + ≡∑ ∑()
 (2)

In equation 2, η is a normalization term. The first probability on the right hand side, (),0ip v , accounts for new

observations and the possibility that the point does not belong to a trajectory. In this paper it is the uniform distribution.
The first term within the summation, is the probability that point ,i tx corresponds to point , 1j tx − . We assume there is no
correspondence information and so this probability is constant. However, we do restrict which correspondences are
considered by bounding the maximum velocity. This constraint is implemented by ()tW i , which includes all points within

a certain window of point i for a given time step. The second term in the summation is a local velocity estimate given that

,i tx corresponds to point , 1j tx − . This distribution must be chosen for the problem, and typically depends on the distance

between the points,
1 2, ,i t j tx x− , which is invariant to translation. We discuss our choices for this distribution in Section

2.2. The third term within the summation is the prior estimate for velocity given the correspondence. This velocity was
calculated in the previously frame at point , 1j tx − . At time 0t = this distribution is assumed uniform.
 We implement equation (2) by representing the probability distributions as histograms. The storage requirements
are the primary concern, and are proportional to () 2

maxTN t V . This may be expensive for some applications that require
extremely precise velocity estimation, but in many cases, the cost is comparable to other point matching algorithms used to
find correspondences. For example, a maximum velocity of 16 pixels would mean our algorithm has similar storage
requirements to matching 128 element SIFT descriptors [6] .

Also of computational concern is how the neighborhood radius increases with temporal window size T . That is, the

number of potential neighbors at frame t s− is on the order ()2

maxsV which means the algorithm is only practical for

small temporal windows. There are a number of ways that the local velocity estimate could depend on the temporal
window size. In this paper, we assume constant velocity, and linearly scale velocity estimates by s .

Typically we post-process the distributions associated with each point to extract information relevant to an application.
In the experiments in this paper, we use the mode of the distribution, as a track detector. We also use the mean of the
distribution as an estimate for the velocity.

Figure 1: Objects are assumed to travel along discrete trajectories through points in each frame.

3

2.1. Relationship to Other Methods
The recurrent velocity filter has some similarities to the standard Bayesian tracking recursion [9]. However in Equation

2 we can see that our system is stateless. Our approach also has some similarity with the Hough transform track detection
algorithms [1]. However, these algorithms typically involve a much longer temporal window and apply a single global
transformation. Our algorithm is online and local. Finally, our algorithm implements probabilistic voting and therefore has
some resemblance to other voting methods like tensor voting [5]. Typically, these strategies (sensibly) parameterize votes
and do not propagate complete histograms.

2.2. Local Velocity Distributions

We investigate three different distributions for ()1 2, ,| i t j tp v x x− which are illustrated in Figure 2. The first is a

symmetric Gaussian, where the variance reflects our estimate of velocity variability from one frame to the next. The second
is an asymmetric Gaussian, which is orientated to the difference direction, and whose ratio of variances is made linearly
proportional to the magnitude of the difference. At zero speed, the ratio is 1. At the maximum speed the ratio is 0.1. This
distribution is motivated by vehicles traveling on roads, where fast moving vehicles have less chance of changing direction
than slow moving vehicles. The third distribution takes this a step further and weights directional variations in proportion
to velocity. This was implemented in polar coordinates as:

() 2 2/ /rp v e eθ ω σ− −∝ (3)
This distribution gives higher probability to velocities which are consistent with a point moving along a curve.

3. Synthetic Experiments
We performed a number of experiments with synthetic data to investigate the various parameters of the filter. For each

frame, we uniformly sample 200 points from a 500 by 500 spatial grid. We then randomly generate a target trajectory. This
trajectory can be either linear or circular, and any speed from 4 to 16 pixels (our maximum velocity). The track is then
subject to jitter by randomly perturbing the point by up to 2 pixels. At each frame we also include a probability of
trajectory drop out, in which case, the track point is removed.

In our typical experiment, we generate a data set and apply the tracking algorithm in Equation 2. At each point, and for
each frame, we record the highest probability in the distribution. We threshold this value to determine if the point belongs
to a track or not. A typical output from the filter is shown in Figure 3. Points above threshold are marked in black. How
much they are above threshold is indicated by the size of the circular surround. It can be seen that the filter strengthens the

Figure 3: Example of synthetic data and filter output accumulated over 50 frames. Points above threshold are marked in black.
The size of the circular surround indicates how much points are above threshold.

4

seven trajectories despite high levels of clutter (trajectories usually cannot be detected by visual inspection). Also, it can be
seen that, in this case, linear trajectories accumulate greater weight than curved trajectories, which is consistent with the
local velocity distribution that was used.

Our
first experiment was to compare the performance of the three different distributions shown in Figure 2. Jitter was at 1 pixel,
and the drop-out probability was 0.2, and results were averaged over 10 experiments. We threshold the highest probability
recorded at each point at multiple values to produce the Receiver Operating Characteristic curves shown in Figure 4. The
two sets of curves are associated with the two different types of trajectory. The top three curves are for linear trajectories,
and the bottom three curves are generated from circular trajectories. These results confirm the problem specific nature of
the local velocity distributions. The asymmetric distributions with speed-proportional aspect ratios outperformed the
symmetric distribution in the first experiment since they are tuned to linear trajectories. Likewise the symmetric
distribution is a better match for the circular trajectories where direction variation does not depend on speed. The co-
circular distribution was not the best distribution for either type of trajectory. However, all synthetic trajectories had
constant speed, and therefore further experiments are required to evaluate its strengths in more detail.

Figure 4: Performance comparison of local velocity distributions. (Top) Filters applied to linear trajectories and (Bottom)
filters applied to circular trajectories.

Figure 2: (Left) Symmetric Gaussian, (Middle) Asymmetric Gaussian and (Right) Co-circular distributions.

5

 The temporal window size T , has a large impact on the filter’s computational complexity. It is therefore
important to evaluate the benefit of increasing the window size. In the second set of experiments we investigated the
relationship between this window size and target drop out rate. Since we assumed constant velocity, we used linear
trajectories and the asymmetric Gaussian distribution for a local velocity distribution. We varied the drop out probability
from 0.0 to 0.6. Figure 5 shows the results at these two extremes. We hypothesize the poorer performance of large
windows in Figure 5 (top), compared to small windows, is due to the increased track / clutter ratio which leads to longer
convergence times. For the high drop-out probability, we see in figure 5 (bottom) that the performance is improved with
the larger window lengths as we would expect.
 We also investigated the relationship between the constant K and the drop out rate. We observed a similar trend
to Figure 5. For low, or zero drop-out probability, small values of K (1-5) had slightly better performance. However for any
significant drop-out probability the larger values of K (10-100) produced more reliable results. In both cases, the
performance difference was minimal compared to the effect of the temporal window size.

Figure 5: Performance of asymmetric Gaussian filter for varying temporal window length and drop-out probability of
0.0 (leftd 0.6 (right

6

4. Real World Experiments
We investigated the practical utility of our approach using a small collection (45 frames) of geo-referenced images over

a busy freeway intersection. An example frame is shown in Figure 6. The resolution of the imagery is approximately 0.5
meter per pixel at 1 frame per second. The geo-projection, registration, and calibration were applied in real time, and as a
result, the data products are not ideal for automated analysis. As shown in Figure 7 (left) vehicles suffer from large
variations in illumination and ground sample distance. In Figure 7 (right) we see an example of a difference image, where
poor registration has led to significant motion clutter.

4.1. Preprocessing and Point Extraction
To obtain a discrete set of candidate vehicles for each frame requires significant pre-processing. This is a challenging

research problem unto itself, and there are many different ways to approach the problem. In this paper we will briefly
describe our initial approach.

Figure 7: (Left) Examples of vehicles. (Right) Example of frame differencing.

Figure 6: A typical frame in the geo-spatial video dataset.

7

The main part of the algorithm is a generic car detector which can be applied directly to the image data. This is
implemented with a sequence of morphological image operations, which are optimized for the problem in offline training.
Figure 8 shows the training data that we used for this optimization. White represents pixels assigned to the target class,
grey represents pixels assigned to the background, and black pixels are left undecided and do not contribute to the
optimization. The training data contains both stationary and moving vehicles as the target class.

The structure of the detector is shown in Figure 9. It comprises two, two-stage morphological operators and a linear
classifier. The parameter space for each morphological operation is summarized in Table 1. All functions exploit
reconstruction [10]. When the rectangle structuring element is used, we use the maxium response from 8 rotations of the
structuring element for Opening filters, and the minimum response for Closing filters. This leads to symmetric filters for
highly asymmetric linear image features, which appear often in the scene due to roads and buildings.

The morpholoigcal pipeline parameters are optimized using a steady-state Genetic Algorithm. For each candidate set of
parameters: 1) the pipeline is applied to the data, 2) the linear classifier is found using Fisher’s Linear Discriminant, 3) a
threshold is found that minimizes misclasification error through exhaustive search, and 4) fitness is assigned based on an
object-centric error measure which we will describe shortly. For the Fisher Discriminant and the threshold, the training
data is weighted so that the two class errors (target and background) have equal weight. We evolved populations of 25
chromosomes, for 25 generations. The probabilities for mutation (for each parameter in Table 1), and uniform crossover
(which randomly swaps complete operations), were both 0.15.

Figure 8: The training data used to optimize the car detector.
Pixels are labeled vehicle (white), background (grey) or left unlabelled (black).

Figure 9: The car detector used as a preprocessor to produce target locations.

8

The training data of figure 8 was produced by hand, and target vehicles are specified with a relatively sloppy markup.
Each vehicle is designated by a swath of pixels which may cover only part of the vehicle, and may, or may not also contain
background. To help minimze the effect of inconsistent markup, the final fitness assigned to a canidate is not a pixel-based
error, but an object-based misclassification error. We apply connected components to the training data and require that the
detector only to correctly predict one of the pixels within each swath. The error for the background class remains the same
as before and is based on pixels. This type of error is also found in many multiple instance learning problems [2].

The final stage of our preprocessor finds the connected components of the detector output and calculates the mean
location for each component. Since we are intersted in detecting moving objects, the final step is to remove points which
appear within 4 pixels on two consecutive frames.

Parameter Possible Values

Function
Reconstruction

{Open, Close, TopHat, BlackHat,
Area Opening, Area Closing, H-
Dome, H-Bowl }

Structuring
Element Shape

{Square, Circle, Rectangle}

Window Size 3..21
Offset 0..255 (for H-Dome, H-Bowl)
Aspect Ratio 1..WindowSize (for rectangle)

Table 1: Parameters associated with morphological operation.

4.2. Velocity Filter Results
The fastest vehicles in the scene are on the interstate, where they can travel approximately 200 pixels / frame. We set our

maximum velocity at 256 pixels / frame and used histograms with 64 by 64 bins by quantizing the differences,
1 2, ,i t j tx x− ,

by a factor of four. We used a temporal window of 2, investigated both symmetric and asymmetric Gaussian distributions,
and set 10K = .

The initial results, shown in Figure 10, appear promising. In the top of Figure 10 we see the points predicted by the
preprocessor as crosses. Points with a high probability from the symmetric Gaussian filter are shown circled. A clearer
picture can be seen at the bottom of Figure 10 for the asymmetric Gaussian filter, which also illustrates the velocity
predicted by the first moment. The two results are fairly similar, with the asymmetric filter obtaining fewer false alarms,
but also fewer detections. We observe that points detected by the symmetric filter, but not detected by the asymmetric
filter, are those vehicles which are moving along the curved entry and exit ramps.

At the bottom of figure 10, we observe that the right hand side of the freeway has a large number of detections which
appear to be driving on the wrong (right) side of the road. This is due to registration errors in the dataset which shift the
freeway by approximately 30 pixels over the 45 frames. Given this, we observe that vehicles entering the scene on the left
and right of the freeway do not appear to be detected. We found this was due to the latency associated with accumulating
an above threshold probability. Freeway vehicles typically cross half our image in approximately 4 or 5 frames. In larger
datasets, we believe this initialization time would be acceptable.

5. Conclusions and Future Work
We have presented a recurrent velocity filter framework for predicting a velocity distribution at a given set of points. The

filter allows correspondences to be made between sets of points, based on trajectory smoothness, and also allows trajectory
specific prior knowledge to be easily incorporated. The filter was tested on a real-world data set and results appear
promising.

Our approach is easily generalized to include correspondence information when it is available. We plan to investigate
this possibility as part of our future work.

9

Figure 10: Output images obtained from the filter. (Top) Using the symmetric Gaussian distribution: Cross marks indicate points
generated by the car detector. Circles indicate points above threshold after the velocity filter is applied. (Bottom) Using the asymmetric
Gaussian distribution: Circles indicate points above threshold and lines indicate predicted velocity.

10

References

[1] Carlson, B.D., E.D. Evans, and S.E. Wilson, Search Radar Detection and Track With the Hough Transform, Part

I-III. IEEE Trans on Aerospace and Electronic Svstems,, 1994. 30(1): p. 102-124.
[2] Dietterich, T.G., R.H. Lathrop, and T. Lozano-Perez, Solving the Multiple-Instance Problem with Axis-Parallel

Rectangles. Artificial Intelligence Journal, 1997. 89.
[3] Hue, C., J.P. Le Cadre, and P. Perez, Tracking multiple objects with particle filtering. . 2000, IRISA,
[4] Isard, M. and J. MacCormick. BraMBLe: A Bayesian multiple-blob tracker. in IEEE International Conference on

Computer Vision. 2001.
[5] Kornprobst, P. and G. Medioni. Tracking segmented objects using tensor voting. in IEEE Conference on

Computer Vision and Pattern Recognition. 2000. Hilton Head Island, South Carolina.
[6] Lowe, D.G., Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer

Vision, 2004. 60(2): p. 91-110.
[7] Pulford, G., Taxonomy of multiple target tracking methods. IEE Proceedings-Radar, Sonar and Navigation, 2005.

152(5): p. 291-304.
[8] Sidenbladh, H. and S. Wirkander. Tracking Random Sets of Vehicles in Terrain. in IEEE Workshop on Multi-

Object Tracking. 2003. Madison, WI.
[9] Stone, L.D., C.A. Barlow, and T.L. Corwin, Bayesian Multiple Target Tracking. Artech House Radar Library.

1999, Boston: Artech House Publishers.
[10] Vincent, L., Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms.

IEEE Transactions on Image Processing, 1993. 2(2): p. 176-201.

